
Polymorphism in silica studied in the local density and generalized-gradient approximations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1999 J. Phys.: Condens. Matter 11 3833

(http://iopscience.iop.org/0953-8984/11/19/306)

Download details:

IP Address: 171.66.16.214

The article was downloaded on 15/05/2010 at 11:32

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/11/19
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter11 (1999) 3833–3874. Printed in the UK PII: S0953-8984(99)01205-9

Polymorphism in silica studied in the local density and
generalized-gradient approximations

Th Demuth†§, Y Jeanvoine‡, J Hafner†§ and J GÁngyán‡
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Received 22 January 1999, in final form 19 March 1999

Abstract. The crystal structures of a large number of silica polytypes (α- andβ-quartz,α- andβ-
cristobalite,β-tridymite, keatite, coesite and stishovite) have been studied using density functional
theory, both in the local density approximation and including generalized-gradient corrections to
the exchange–correlation functional. All crystal structures have been optimized by minimizing
the total energy with respect to all lattice parameters and to the atomic coordinates within the unit
cell (up to 40 structural parameters in the case of coesite). Theα → β transitions in quartz and
cristobalite have been studied in detail, including different variants proposed for the structure ofβ-
cristobalite. The tetragonal(I 4̄2d) and simple cubic(P213) structures are found to be energetically
almost degenerate near the equilibrium volume. On volume expansion both structures converge
towards the idealized highly symmetricFd3m structure. A similar continuous transition from
a more compact orthorhombic(C2221) to a highly symmetric hexagonal(P63/mmc) variant is
also proposed forβ-tridymite. For coesite two monoclinic variants (withC2/c andP21/c space-
group symmetries, respectively) have been examined and found to be energetically degenerate to
within 1 meV per SiO2 unit. It is shown that within the local density approximation (LDA) the
equilibrium atomic volume of all polytypes is predicted with an accuracy better than one per cent.
The LDA also leads to excellent structural predictions and to accurate values of the bulk modulus.
Corrections in the framework of the generalized-gradient approximation (GGA) lead to substantially
larger equilibrium volumes, although at fixed volume the LDA and GGA lead to identical crystal
structures. The increased volume also leads to less accurate structural parameters. However, we find
that gradient corrections are essential for achieving accurate structural energy differences between
the tetrahedrally coordinated phases found at larger atomic volumes (all polytypes except stishovite)
and the octahedrally coordinated high-pressure polymorphs (stishovite and post-stishovite phases).

1. Introduction

Since silica is a fundamental building block of many rock-forming minerals, the structures and
physicochemical properties have been the subject of numerous investigations for decades [1,2].
In addition, SiO2 is widely used in the ceramic and glass industries and has an enormous
application potential in optical fibres, in microelectronics and in catalysis. On the other hand,
silica is one of the most difficult materials to study. The origin of this difficulty is in the
enormous structural complexity. Silica exists in many different crystalline forms:α- andβ-
quartz,α- andβ-cristobalite, tridymite, keatite, coesite and stishovite [3–6]. Most of these
structures are composed of corner-sharing tetrahedral SiO4 units with a fourfold-coordinated
silicon at the centre and twofold-coordinated oxygen atoms at the corners. The structures differ
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only in the connectivity of the basic tetrahedral units and hence show only minimal structural
energy differences. This is what makes an accurate calculation of the phase equilibria between
the different silica polymorphs such a very delicate problem.

The discovery of stishovite, a dense polymorph of SiO2 with octahedrally coordinated
silicon [7] has excited enormous interest in the possibility of the existence of further dense
octahedral phases at high pressure. It has been shown that at a pressure of 50 GPa, stishovite
undergoes a displacive phase transition to a CaCl2 structure [8]. Very recently, experimental
as well as theoretical evidence for a number of possible post-stishovite phases withPnc2-
type [9, 10],I2/a [11] and a variety of further structures has been proposed. Thus it appears
that the structural complexity of the octahedral phases is at least equivalent to that of the
tetrahedral low-pressure phases.

During the past decade considerable progress has been achieved in the computational
modelling of phase stability and phase transitions in silica. In principle, the goal of such studies
is not only to predict the physical properties of a material with a given crystal structure, but
also to determine the equilibrium structure at a fixed temperature and pressure, starting from a
random distribution of the atoms. The computationally less demanding approach is based on the
use of empirical, semiempirical or first-principles-based interatomic force fields [12] and allows
one to analyse the structural and physical properties of the silica polymorphs. For example,
Boisen and co-workers [13] used a combination of dynamical simulated annealing and quasi-
Newton minimization techniques to search for the global and local minimum-energy structures
of ensembles with up to eight SiO2 formula units distributed randomly in an asymmetric unit
cell. The interatomic potentials are based on the quantum-mechanical potential energy function
calculated for the molecule H2Si2O7. Following this strategy, 23 distinct minimum-energy
structures could be determined. Some of these structures could be identified with one of the
known silica polymorphs; others are different from all known structures but nevertheless very
close to the total energy of the known modifications. However, it remains uncertain whether a
force field extrapolated from molecular calculations is sufficiently accurate to allow a reliable
prediction of such subtle energy differences. Furthermore, studies based on more or less
empirical potentials fall short of elucidating the deeper reasons for the coexistence of so many
energetically almost degenerate polytypes. On the other hand,ab initio quantum-mechanical
calculations of the atomic and electronic structure based on density functional theory in the
local density approximation (LDA) or Hartree–Fock theories are independent of any biasing
ad hocassumptions and should—at least in principle—provide both accuracy and insight at
the required level.

However, the quantum-mechanical modelling of the silica polytypes is a computationally
very demanding task. This is due not only to the subtlety of the energy differences to be
calculated. Further difficulties arise from the complexity of some of the crystal structures
involved (coesite for example has seven inequivalent atomic positions within the unit cell in
the proposedC2/c structure and even twelve inequivalent positions in theP21/c structure.
Hence a complete optimization of the structure requires a minimization of the total energy
with respect to up to forty independent lattice and internal parameters), from the strength and
non-locality of the pseudopotentials necessary to describe the oxygen ion with the required
accuracy, and from the limitations of the local density approximation in predicting structural
energy differences between structures with very different local environments of the ions.

A significant advance beyond standard electronic structure methods based on the
straightforward diagonalization of the full Hamiltonian matrix has been initiated by Car and
Parrinello [14]. The basic idea is that, especially with a plane-wave basis, the number of
eigenvalues required for a calculation of the ground state is much lower than the dimension
of the Hamiltonian matrix. The lowest eigenvalues and the corresponding eigenvectors can
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be calculated very efficiently using iterative diagonalization techniques such as simulated
annealing [14] or a preconditioned conjugate-gradient method [15–17]. Still, because of
the orthogonalization operations involved, the computational effort scales cubically with the
number of atoms in the limit of very large systems. This scaling is significantly improved upon
by using diagonalization techniques based on the minimization of the norm of the residual
vector to each eigenstate [17], so nowadays calculations can be made for very large systems
without any loss of accuracy [18].

All first-row elements (e.g. oxygen) are difficult to handle within a conventional norm-
conserving pseudopotential scheme. Due to the lack of corresponding core states for cancel-
lation, the 2p valence orbitals of these elements are tightly bound and sharply peaked near
the ionic core. A hard pseudopotential and correspondingly a very large plane-wave basis
set is required to cope with such a situation. The ultrasoft pseudopotentials introduced
by Vanderbilt [19] offer the advantage of requiring significantly fewer plane waves than
norm-conserving pseudopotentials while still providing an impressive degree of accuracy and
transferability, matching that of the results obtained with the best available all-electron methods
(for detailed comparisons see, e.g., references [20–23]).

Finally, a comparison of the total energies of crystalline phases with significantly different
local environments (such as the tetrahedrally coordinated low-pressure/high-temperature poly-
morphs of silica on one hand and the octahedrally coordinated stishovite and post-stishovite
phases on the other hand) goes to the very limits of the local density approximation (LDA).
To cope with certain deficits of the LDA (‘overbinding’, i.e. overestimation of the equilibrium
density and binding energy), generalized-gradient corrections (GGC) to the LDA have been
introduced [24]. Applications of the more refined forms of these corrections to isolated
molecules have demonstrated a marked improvement of structural and energetic predictions
over the LDA [25, 26]. For the description of crystalline phase stabilities, the situation is
not so clear. For the covalently bonded elements from groups IV to VI of the Periodic Table
it has been shown that while at constant volume the gradient corrections hardly affect the
predicted equilibrium structure, significant differences in the equation of state also lead to
important changes in the calculated structural enthalpy differences at constant pressure and
in the calculated transition pressures [20, 28]. The recent work of Hamann [29] suggests
that at least the phase transition fromα-quartz to stishovite is similarly affected by non-local
corrections to the LDA [29].

To date,ab initio local density functional calculations have been performed for a number
of silica polytypes:α-quartz [29–32],β-quartz [32, 33],α-cristobalite [30, 32, 34],β-cristo-
balite [32, 33, 35] and stishovite [29–33, 36, 37]. Teteret al [33] investigated also some of
the hypothetical structures identified by Boisenet al [13]. A number of different possible
octahedrally coordinated post-stishovite phases have recently been studied by Teteret al
[38]. In addition to the pressure-induced transitions between crystalline polymorphs, the
amorphization ofα-quartz under pressure has been studied [39]. With the exception of the
work of Parket al[36] and Cohen [37] who used the linearized augmented plane-wave (LAPW)
method, all calculations have been performed within the pseudopotential framework. All
investigations except the work of Hamann [29] on theα-quartz→ stishovite transition use the
LDA.

Ab initio Hartree–Fock calculations have been performed forα-quartz [40–43],α-cristo-
balite [44, 45] and stishovite [44, 46]. However, most of these calculations fall short of a full
structural optimization of the complex crystal lattices and of quantitative calculations of the
structural energy differences.

Hamann’s work [29] on the quartz→ stishovite phase transition demonstrates that only
the gradient corrections lead to a reasonably accurate prediction of the transition pressure.
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The important result is that while the LDA calculations predict an energy difference of
only 0.086 eV per SiO2 unit (Keskar and Chelikowsky, reference [31]), 0.07 eV (Liuet al,
reference [32], gradient corrections lead to a significant enhancement of the structural energy
difference to1E = 0.57 eV/SiO2 unit (Hamann, reference [29]), in coincidence with the
Hartree–Fock result of1E = 0.57 eV/SiO2 unit [46] and with the experimental estimate
1E = 0.54 eV/SiO2 unit of Holm et al [47] and of Akaogi and Navrotsky [48]. As
demonstrated by Hamann, this has a very strong influence on quantitative predictions of the
α-quartz−→ stishovite transitions.

The analysis of the available theoretical results suggests that the LDA predictions for
the structural phase stability of the other quartz polymorphs have to be re-examined with a
view to finding the possible influence of non-local corrections to the exchange–correlation
functional. The problem is also complicated by the fact that although the GGA definitely
improves the predicted structural energy difference, the gradient-corrected equilibrium density,
bulk modulus and equation of state are not consistently better than the LDA predictions [29]. In
addition, the more complex tetrahedral polymorphs of silica such as tridymite [49], keatite [50]
and coesite [51] have not yet been examined usingab initio methods.

In the present work we report on local density functional and generalized-gradient
calculations of the structural and cohesive properties ofα- andβ-quartz,α- andβ-cristobalite,
tridymite, keatite, coesite and stishovite. We believe that our work is of interest for several
reasons. First, we investigate a larger range of silica polymorphs than are treated in any other
previous study. It is also important that the uniform theoretical treatment facilitates systematic
comparisons and the identification of trends. Second, we present the firstab initio investigation
of the more complex polytypes. Third, we investigate the pressure-induced changes in the
crystal structure in sufficient detail to allow us to develop a microscopic picture of the phase
transitions.

2. Theory

For our calculations we used the Viennaab initio simulation package (VASP) [16,17], which
is based on the following principles:

(a) We use LDF theory [52, 53] with the exchange–correlation functional given by Ceperley
and Alder as parametrized by Perdew and Zunger [54]. Generalized-gradient corrections
to the local exchange–correlation functional have been treated as proposed by Perdew
et al [25]. Alternatively, the exchange functional of Perdew [55] together with the
correlation functional proposed by Becke [26, 56] have been used to test the influence
of different approximations to the gradient functional.

(b) The solution of the generalized Kohn–Sham equations is performed using an efficient
matrix-diagonalization routine based on a sequential band-by-band residual minimization
method (RMM) applied to the one-electron energies [17,57].

(c) In the doubly iterative RMM method it is essential to use an efficient charge-density
mixing routine to avoid charge-sloshing problems. We use an improved Pulay mixing for
calculating the new charge density and potential [58]. We have found that the sequential
band-by-band algorithm combined with an efficient mixing algorithm is considerably
faster than conjugate-gradient (CG) algorithms attempting a direct minimization of the
energy by treating all bands simultaneously [17].

(d) The optimization of the atomic geometry is performed via a conjugate-gradient min-
imization of the total energy with respect to the volume and shape of the unit cell
and to the atomic coordinates. The structural optimization was terminated when the
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energy difference between two successive steps became smaller than 10−5 eV. In addition,
a requirement for convergence is that all forces acting on the atoms are smaller than
0.03 eV Å−1.

(e) After moving the atoms, the new charge densities are estimated by extrapolating the results
of the last few steps.

(f) The calculation has been performed using fully non-local optimized ultrasoft pseudo-
potentials [19, 20]. The non-local contributions are calculated in real space, using the
optimized projectors introduced by King-Smith, Payne and Lin [59]. Details of the
pseudopotentials are given in references [20, 21]. The cut-off energy for the plane-wave
basis set wasEcut = 396 eV; for the augmentation charges a cut-off of 829 eV was used.

(g) Brillouin-zone integrations were performed using a grid of Monkhorst–Pack special
points [60] and using the linear tetrahedron method [61] with the corrections proposed by
Blöchlet al [62]. This technique is most appropriate for semiconducting systems.

(h) The energies calculated as a function of volume were interpolated using a Murnaghan
equation of state [63, 64]. This equation was used to estimate the pressure, the bulk
modulus and its pressure derivative. Our choice between the Birch–Murnaghan and
Murnaghan equations of state was motivated by the fact that the latter is valid over a
wider range of pressures [64]. However, it was found that a reasonable quality of the
fit could be achieved only if a rather fine-grained mesh of volumes was used, and even
then the fit is good only over a restricted range of volumes. The reason for this is that
the energy–volume curves (especially those of the low-temperature forms of quartz and
cristobalite) are affected by the proximity of a structural phase transition.

3. Theory of silica polymorphs

Only very recently an attempt has been made to describe the structural relationships between
the silica polymorphs within the framework of current theories of structural phase transitions.
Dmitriev et al [65] proposed describing the crystal structures of the silica polymorphs as the
results of ordering and displacive transformations from a parent disordered body-centred cubic
structure with different fractional occupancies of SiO2 units. The degree of occupancy varies
from 1 in the high-pressure stishovite phase over 2/3 in the intermediate- and low-pressure
phases of coesite and quartz to 1/2 in the low-pressure–high-temperature phases of tridymite
and cristobalite. This structural relationship might ultimately lead to a microscopic scenario for
the reconstructive transitions between these structures completing, together with the established
descriptions of the displacive phase transitions between the high- and low-temperature forms
of cristobalite and quartz [66, 67], our understanding of the polymorphism in silica. The aim
of the present study is to give a complete account of the structure and energetics of the silica
polymorphs on the basis ofab initio density functional theory and in addition to contribute to
the understanding of the mechanism of the structural phase transitions.

3.1. Quartz

In the low- and high-temperature forms of quartz, SiO4 tetrahedra are arranged on pairs of
helical chains spiralling in the same sense around a hexagonal screw axis. According to the
direction of the rotation, one distinguishes between left- and right-handed forms of ‘high’- and
‘low’-quartz. The structure of ‘low’- (orα-) quartz may be considered as a distorted form of
the idealized structure of ‘high’- (orβ-) quartz. The distortion may be described as a rigid
rotation of the SiO4 tetrahedra about the (100) axis (see figure 1). In theβ-polymorph the
tilt angle δ is zero; in theα-form one hasδ = ±16.3◦ (reference [71]). There is, however,
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(a) (b)

Figure 1. Representations of theα-quartz (a) (P3221) andβ-quartz (b) (P6222) structures. Large
spheres represent Si; small spheres represent O atoms.

still some controversy as regards whether in theβ-phase the atoms really occupy the high-
symmetry positions or whether theβ-structure is no more than a disordered array of small
domains of theα-form [67–69]. Hence there is a particular interest in studying the variations
of the equilibrium structures on approaching the phase transition.

Table 1. Structural parameters, bond lengths (in Å) and bond angles (in degrees), cohesive energies
and bulk moduli forα-quartz(P3221). δ is the tilt angle of the SiO4 tetrahedra relative to the
symmetric orientation inα-quartz.

Experimenta GGAb LDAb GGAc LDAc

a (Å) 4.9160 5.0271 4.8992 4.97 4.84
c (Å) 5.4054 5.5089 5.3832 5.52 5.41
c/a 1.1001 1.0958 1.0988 1.1107 1.1178
V /SiO2 (Å3) 37.71 40.19 37.30 39.36 36.58
Si(u) 0.4697 0.4814 0.4695
O(x) 0.4135 0.4165 0.4143
O(y) 0.2669 0.2460 0.2670
O(z) 0.1191 0.1364 0.1199

Si–O 1.6137 1.6170 1.6045 1.622 1.611
Si–O 1.6046 1.6137 1.5987 1.625 1.617
O–Si–O 109.0 108.4 109.3
O–Si–O 110.5 110.4 110.4
O–Si–O 108.8 109.5 108.8
O–Si–O 109.2 108.8 109.2
Si–O–Si 143.7 149.5 144.1 143.7 145.5

δ −16.3 −10.4 −15.9

E0 (eV/SiO2) −23.8261 −25.9641
B0 (GPa) 34–37 31.3 35.4 48 45
B ′0 5.99 3.1 4.9 3.0 4.9

a Reference [102] for the structure data; references [102], [72] and [73] for the bulk moduli.
b Present work.
c Reference [29].
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3.1.1. α-quartz. α-quartz has the hexagonal space-group symmetryP3221 for the right-
handed enantiomorph andP3121 for the left-handed form. In addition, the tilt angle can be
positive or negative, leading to four different forms ofα-quartz. The different orientations
of the tilt are related to the formation of Dauphiné twins. Naturalα-quartz is a mixture of
Dauphińe twins differing only in the sign of the tilt angle. The primitive unit cell contains three
formula units. At a fixed volume, five parameters must be determined to specify the structure:
the axial ratioc/a and the internal parametersu, x, y, z. Si atoms occupy the Wyckoff positions
(3a) with coordinates(u, 0, 2/3), O atoms the positions (6c) with coordinates(x, y, 2

3 + z).
Throughout this work we shall use the notation (u, v,w) for the internal parameters of silicon
and (x, y, z) for oxygen. Table 1 presents the results of the structural optimizations performed
in the local density and generalized-gradient approximations (Brillouin-zone integrations have
been performed using a 3×3×3 grid, corresponding to 14 irreducibleEk-points) in comparison
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Figure 2. The calculated variations of the lattice constantsa andc (part (a)) and of the internal
structural parameters (b)u(Si),x, y, z(O) ofα-quartz (cf. text) with pressure. Solid curves represent
LDA results; broken curves represent GGA results. The points represent the experimental data of
Levienet al given in reference [71].
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with the experimental data. For the lattice constants we use the data obtained very recently
by Angel et al [70], the internal parameters are from the structural refinement of Levien
et al [71] and the values of the bulk moduli from references [71–74]. The first important thing
to note is that the LDA predicts the equilibrium volume per SiO2 unit with an accuracy of 1%,
whereas the GGA leads to an overestimate of 6.6%. The LDA also leads to a consistently
more accurate description of all internal parameters, of the distortion of the SiO4 tetrahedra
(note in particular the O–Si–O bond angles), of the tilt angle of the tetrahedra with respect to
the high-symmetry orientations and of the bulk modulus. Equilibrium volumes determined in
previous LDA [29, 31–33] calculations scatter betweenV = 36.58 Å3 andV = 38.55 Å3;
all are less accurate in the prediction of the internal parameters. The GGA calculation of
Hamann [29] predicts an increase of the volume with respect to the LDA value of∼7.6%, in
agreement with the present results.

The calculated variations of the internal parameters under pressure are compared in figure 2
with the experimental data of Levienet al [71]. We find a very good agreement of the LDA
data with experiment, while there is a systematic deviation in the GGA results. However, this
does not reflect a different description of the atomic arrangement, but merely a superposed
isotropic pressure arising from the gradient corrections. The bulk modulusB0, its pressure
derivativeB ′0 and the equation of state (see figure 3) are consistently better described in the
LDA approximation.
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Figure 3. The equation of state ofα-quartz, calculated in the LDA (solid curves) and GGA
(broken curves). The points represent the experimental data of Hazenet al(reference [73], crosses),
Glinnemannet al (reference [72], circles) and Levienet al (reference [71], triangles).

3.1.2. β-quartz. The idealized structure of ‘high’- orβ-quartz has space-group symmetry
P6222 for the right-handed form andP6422 for the left-handed enantiomorph. The unit cell
contains nine atoms; Si occupies the Wyckoff positions (3c) and O the positions (6j) with
coordinates(x, 2x, 1/2). Hence at fixed volume there are only two structural parameters to be
determined. TheEk-point sampling has been performed on the same 3× 3× 3 grid of special
points as forα-quartz, but due to the higher symmetry the number of irreducible points is
reduced to six. Our results are compiled in table 2, compared with the experimental data of
Wright and Lehmann [75] for the structure. Both the LDA and the GGA overestimate the
equilibrium volume, the LDA by 2%, the GGA by 5.5%. Hence the influence of the gradient
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Table 2. Structural parameters, bond lengths (in Å), bond angles (in degrees), cohesive energies
and bulk moduli forβ-quartz(P6222).

Experimenta GGAb LDAb LDAc

a (Å) 4.9977 5.0845 5.0261 5.0526
c (Å) 5.4601 5.5647 5.5124 5.5488
c/a 1.0925 1.0944 1.0967 1.0982
V /SiO2 (Å3) 39.37 41.53 40.20 40.89
O(x) 0.2072 0.2091 0.2090 0.2089

Si–O 1.5895 1.6142 1.5968 1.6063
O–Si–O 110.1 109.9 109.8
O–Si–O 111.3 110.4 110.5
O–Si–O 107.0 108.1 108.2
Si–O–Si 153.0 154.2 154.2 154.1

E0 (eV/SiO2) −23.8242 −25.9381
B0 (GPa) 121.6 132.6
B ′0 2.9 3.9

a Reference [75].
b Present work.
c Reference [32].

corrections is distinctly smaller than for the more close-packedα-quartz. The axial ratios
and internal parametersx are hardly influenced by the gradient corrections; agreement with
experiment is excellent. A remarkable result is that the computed bulk modulus is nearly four
times larger than forα-quartz (we note that our LDA result ofB0 = 132.6 GPa is in very good
agreement with the calculation of Keskar and Chelikowsky [31] based on empirical pairwise
interatomic potentials). This shows that the symmetry constraint increases the stiffness of the
lattice. Experimentally, the bulk modulus ofβ-quartz has been measured only at the high
temperature ofT = 873 K, leading to a value ofB0 = 56.4 GPa, which is much smaller
than the theoretical prediction [76]. The difference has to be attributed to the temperature-
induced softening of the lattice due to the excitation of soft rigid-unit modes (cf. below).
Both the LDA and the GGA predict the total energy to be lower forα-quartz, the structural
energy differences being1E = 0.0259 eV/SiO2 unit (LDA) and1E = 0.0019 eV/SiO2 unit
(GGA), corresponding to differences in the equilibrium volumes of1V = 2.9 Å3 (LDA)
and1V = 1.34 Å3 (GGA). Hence although both calculations agree in predicting a driving
thermodynamic potential for breaking the symmetry of theβ-phase stabilized at an expanded
volume, the structural differences in the equilibrium energies and volumes are sufficiently
different to allow for significant differences between the microscopic scenarios of the transition
established on the basis of the two approximations.

3.1.3. Theα → β phase transition in quartz. The displacive phase transition in quartz
has been known of for more than a century [66], but continues to attract scientists’ interest.
Only less than ten years ago was it discovered that the classicalα → β transition consists
in reality of two separate phase transitions, with a stable intermediate incommensurate phase
that exists only over a narrow temperature interval of 1.5 K (reference [66]). The displacive
α → β phase transition is generally described within the ‘soft-mode’ concept for structural
phase transitions [77]. The fundamental idea is that as the framework of connected SiO4

tetrahedra buckles at the phase transition by rotations and translations of the tetrahedra, these



3842 Th Demuth et al

do not themselves distort significantly [78]. It has been shown that these soft ‘rigid-unit modes’
(RUM) can propagate as phonons and occur for a number of wave-vectors in the Brillouin zone
and not only at the wave-vector driving the displacive phase transition [79]. The rigid-unit
mode concept can also explain the occurrence of an incommensurate phase [80] and represents
a unifying concept for displacive phase transitions in silicates and aluminosilicates [67].
However, there are still some unresolved problems, in particular how close to the soft-mode
limit theα→ β transition really is and what the nature of the anharmonic coupling of the soft
modes is. Here we make an attempt to contribute to the study of the transition by exploring
the structural changes close to the transition byab initio calculations.

The atomic structure was optimized at a series of fixed volumes under the symmetry
constraints of either theP6222 (β) or P3221 (α) space groups. The structure ofα-quartz
becomes equivalent to that ofβ-quartz in the limitsu(α)→ 0.5,x(α)→ 2x(β),y(α)→ x(β),
z(α)→ 1/6. Both sets of calculations have been performed using the same 3× 3× 3 Ek-point
grid for Brillouin-zone integrations. Calculations based on a 4× 4× 4 grid lead to identical
results.

�-q
�-q

(a)

V(�A3)

E
(e
V
)

5045403530

-25.5

-25.6

-25.7

-25.8

-25.9

-26.0

�-q
�-q

(b)

V(�A3)

E
(e
V
)

5045403530

-23.0

-23.2

-23.4

-23.6

-23.8

-24.0

�-q
�-q

(c)

V(�A3)

E
(e
V
)

434241403938

-25.85

-25.88

-25.91

-25.94

-25.97

-26.00

�-q
�-q

(d)

V(�A3)

E
(e
V
)

4342414039

-23.76

-23.79

-23.82

-23.85

-23.88

Figure 4. Energy versus volume forα- andβ-quartz, calculated in the LDA (a) and in the GGA (b).
Panels (c) and (d) show zooms where the two curves meet.

Figure 4 shows the variations of the total energies ofα- andβ-quartz with the volume. We
find that the two curves merge close to the equilibrium volume of theβ-phase; at larger volumes
only the high-symmetry structure corresponds to an energy minimum in the configuration space
fixed by the constraints ofP3221 space-group symmetry. Hence there is the possibility of a
continuousα → β phase transition. This is explored in more detail in figure 5 where we
show the variations of the internal parameters and of the axial ratio as functions of the volume.
We find that as the volume is expanded, the structural parameters of theα-phase continuously
approach those of theβ-phase. However, the volume for the lock-in transition beyond which



Polymorphism in silica studied in the LDA and GDA 3843

V G
�V G

� ; V L
�V L

�

z(�)

u(�)

y(�)

2u(�)

x(�)

u(�)

V(�A3)

in
te
rn
a
l
p
a
ra
m
et
er
s

453530

0.5

0.4

0.3

0.2

0.1

Figure 5. The variations of the internal parameters ofα- andβ-quartz as calculated in the LDA
(full curves, squares, circles and triangles) and in the GGA (broken curves, crosses and stars).
The vertical curves indicate the equilibrium atomic volumes of theα- andβ-phases, respectively,
calculated in the LDA (L) and GGA (G).

theα-phase does not even correspond to a metastable configuration is, in both the LDA and
the GGA, predicted to be larger than the equilibrium volume of theβ-phase. Hence a possible
second-orderα→ β phase transition at zero temperature is predicted only for small negative
pressures, in agreement with the low-temperature extrapolation of theα–β coexistence line.
An important result is that at fixed volume (except in the immediate neighbourhood of the lock-
in transition), the optimized parameters calculated using the LDA and the GGA are identical.
Hence the only effect of the GGA is to add an isotropic term to the internal pressure. This
agrees with earlier results on elemental structures [81]. The examination of the energy versus
volume shows that in the region where the two curves meet, the energy of theα-phase varies
almost linearly with volume—hence it is almost indistinguishable from a tangent to the energy
of theβ-phase at the volume of the lock-in transition. Thus the hypothetical zero-temperature
α→ β transition at negative pressure is second order or very weakly first order.

The variation of the local atomic geometry at the transition is examined in figure 6. Only
the LDA results are shown. The tilt angleδ (which is the order parameter of the phase
transformation) goes to zero at the transition. For a second-order transition, Landau theory
predictsδ ∝ (V − V0)

1/2 in the critical region whereV0 is the volume at the transition.
Figure 6(a) reflects the expected behaviour of the tilt angle (see also figure 5 for the individual
internal parameters). In theβ-phase we find a strong decrease of the Si–O distances with
decreasing volume, while the Si–O–Si bond angle varies only slightly. Below theβ → α

transition the Si–O distances remain almost constant under further compression, while the
Si–O–Si bond angle shows a strong decrease. Hence, in agreement with the RUM model for
the displacive phase transition we find that the symmetry breaking is driven by the resistance
of the SiO4 tetrahedra to distortion and the ability of the low-symmetry structure to reduce the
energetic cost of further compression by correlated rotations of the tetrahedra.

3.2. Cristobalite

‘Low’- ( α-) and ‘high’- (β-) cristobalite form relatively open tetrahedral frameworks
describable in terms of infinitely extended sheets of SiO4 tetrahedra forming eight-membered
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Figure 6. The variations of the tilt angleδ (a) and of the Si–O distances and of the Si–O–Si bond
angle (b) close to theα → β phase transition in quartz as calculated with the LDA. Full curves:
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rings. The structure ofβ-cristobalite remains controversial; at least five different structures
have been proposed [82–86].

Wyckoff [82] proposed a cubic structure with space groupFd3m in which the Si atoms
form a diamond sublattice with the O atoms at the midpoints of the Si–Si bonds. This structure
was criticized because the Si–O–Si bond angle of 180◦ is much larger and the Si–O distance
of 1.54 Å much smaller than in any other silica polytype. Barth [83] proposed a simple cubic
structure with space groupP213 in which the atoms are displaced from theFd3mpositions such
as to yield bond distances and angles in the right range. Disorder models for ‘high’-cristobalite
have been proposed by Nieuwenkamp [84], Peacor [85] and Wright and Leadbetter [86]. In
the model proposed by Nieuwenkamp and later refined by Peacor, the O atoms are distributed
randomly over six equivalent sites forming a circle normal to the Si–Si axis such that on average
the cubicFd3m symmetry is preserved. Wright and Leadbetter proposed assigning one of
the six positions to the O atoms such that neighbouring SiO4 tetrahedra are rotated relative
to the ideal structure by±20◦ about the4̄ axis, leading to a tetragonal structure withI 4̄2d
symmetry. The pseudocubicFd3m symmetry of the diffraction pattern is supposed to arise
from an average over small domains with the six possible orientations of the tetragonal lattice.
Recently Liuet al [35] have examined the three structures (Fd3m, P213, I 4̄2d) proposed for
β-cristobalite byab initio total-energy calculations and claimed that theP213 structure can be
discarded as being energetically disfavoured.

The structure ofα-cristobalite was studied by Barth [87], Nieuwenkamp [88], Dollase [89],
Pluthet al [90] and Downs and Palmer [91]. The structure has space groupP41212. It may be
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(a) (b)
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Figure 7. Representations of the crystal structures ofα-cristobalite (P41212) (a) andβ-cristobalite:
P213 (b),I 4̄2d (c) andFd3m (d) structures.

considered as a distortional derivative of the ideal cubic structure ofβ-cristobalite. The rotation
axes on neighbouring tetrahedra are orthogonal to each other (and not antiparallel as forβ-
cristobalite) and the rotation angles are slightly larger (about 24◦). Theα→ β transformation
in cristobalite was investigated by Peacor [85]. It was shown that with increasing temperature
the atomic positions and cell parameters ofα-cristobalite relax continuously in the direction
of those of the high-temperature form and that this is related to the anomalous high anisotropy
of the thermal expansion ofα-cristobalite. O’Keefe and Hyde [92] have pointed out that the
structure of domain walls of tetragonal (I 4̄2d) β-cristobalite can be arranged such as to assume
a localP41212 symmetry. The energetics of the transformation between the two tetragonal
structures ofα- andβ-cristobalite has been discussed by Liuet al [35]. The crystal structures
proposed forα- andβ-cristobalite are shown in figure 7.

3.2.1. α-cristobalite. In the P41212 structure ofα-cristobalite, Si occupies the Wyckoff
positions (4a) with coordinates(u, u,0) and O the positions (8b) with coordinates (x, y, z).
Hence at fixed volume the five independent parametersc/a, u, x, y andzmust be determined.
The calculations were performed for a 3× 3× 3 grid of special points corresponding to six
irreducible points. The data for the equilibrium structure obtained in the LDA and GGA are
compiled in table 3, together with the experimental data of Downs and Palmer [91] for the
structure and for the bulk modulus. While the LDA predicts the equilibrium volume, bond
lengths and bond angles in excellent agreement with experiment, the GGA overestimates the
equilibrium volume by as much as 9.8%. Despite the too-large volume, the bond distances
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calculated in the GGA are almost the same as those predicted in the LDA. The expansion of
the volume influences the Si–O–Si bond angle much more than the bond length. The very low
bulk modulus ofB0 = 11.5 GPa reflects the unusual softness of the cristobalite lattice. Our
present LDA results for the equilibrium volume are in very good agreement with the work
of Liu et al [32] which is also based on ultrasoft pseudopotentials. The internal parameters
calculated by Liuet al on the other hand are slightly less accurate, as reflected in a too-
large difference in the Si–O bond length. We believe that the difference is due to the limited
accuracy of a Brillouin-zone integration based on two special points only. The calculation of
Teteret al[33] based on extended norm- and hardness-conserving pseudopotentials on the other
hand overestimates the equilibrium volume by as much as 6.1%. We believe that the difference
is due to the use of hard pseudopotentials for which complete plane-wave convergence is almost
impossible to achieve.

Table 3. Structural parameters, bond lengths (in Å), bond angles (in degrees), cohesive energies
and bulk moduli forα-cristobalite(P41212). δ is the tilt angle of the SiO4 tetrahedra relative to
their orientation in the high-symmetry form (Fd3m) of β-cristobalite.

Experimenta GGAb LDAb LDAc LDAd

a (Å) 4.9717 5.1190 4.9751 5.0630 4.9586
c (Å) 6.9222 7.1683 6.9261 7.0823 6.9074
c/a 1.3923 1.4003 1.3921 1.3988 1.3930
V /SiO2 (Å3) 42.77 46.96 42.86 45.39 42.46
Si(u) 0.3003 0.2869 0.2988 0.2895 0.3028
O(x) 0.2392 0.2439 0.2399 0.2431 0.2383
O(y) 0.1044 0.0777 0.1007 0.0833 0.1093
O(z) 0.1787 0.1657 0.1768 0.1687 0.1816

Si–O 1.6026 1.6144 1.5970 1.6037 1.6046
Si–O 1.6034 1.6146 1.5991 1.6037 1.6113
O–Si–O 109.0 108.7 109.1 108.7 109.1
O–Si–O 110.0 109.6 109.9 109.7 110.0
O–Si–O 108.2 108.8 108.3 108.7 108.0
O–Si–O 111.4 111.2 111.1 111.4 111.7
Si–O–Si 146.5 154.2 147.7 152.2 144.9

δ 23.25 18.03 22.5

E0 (eV/SiO2) −23.8579 −25.9388
B0 (GPa) 11.5 9.4 12.8 11.9 14.8
B ′0 9 3.8 6.3 3.0 2.4

a Reference [91].
b Present work.
c Reference [33].
d Reference [32].

The unusual softness of the structure ofα-cristobalite leads one to expect large structural
variations as functions of volume. Indeed as shown in figure 8 we find a continuous trend
towards the cubicFd3m symmetry on expansion expressed byc/a → √2, u(Si) → 1/4,
x(O) → 1/4, y(O) → 0 andz(O) → 1/8. At a fixed volume, LDA and GGA result
again in almost identical structural parameters, except in the immediate neighbourhood of the
tetragonal-to-cubic transition which occurs at volumes ofV = 50.45 Å3/SiO2 unit (LDA) and
V = 53 Å3/SiO2 unit (GGA). The change in the structure affects only the Si–O–Si bond angle
(which tends towards 180◦), while the Si–O bond lengths remain almost constant over a very
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Figure 8. The variations of the axial ratioc/a and of the tilt angleδ of the SiO4 tetrahedra (a)
and of the internal parametersu, x, y, z of α-cristobalite (P41212) (b) with volume.c/a = √2,
u = x = 1/4, y = 0, z = 1/8 correspond to the cubic (Fd3m) limit. Full curves, triangles,
squares and circles represent LDA results; broken curves, crosses and stars crosses represent GGA
results.

wide range of volumes, the differences between the two inequivalent distances decreasing on
approaching the high-symmetry structure (see figure 9). We note that this trend agrees with
the observations of Peacor [85] on the structural variations ofα-cristobalite with increasing
temperature.

3.2.2. β-cristobalite. The three crystal structures proposed forβ-cristobalite (P213, I 4̄2d,
Fd3m) can in principle be studied using a common simple cubic cell containing eight SiO2

units, although a smaller cell with only four formula units would be sufficient for the last
two structures. In the simple cubicP213 structure, Si occupies Wyckoff positions (4a) with
coordinates(u, u, u), u = 0.255 for Si1 andu = −0.008 for Si2, and O atoms Wyckoff
positions (4a) withx = 0.125 (O1) and (12b) with coordinates (x, y, z), x = y ≈ 0.66,
z ≈ 0.06 (O2) (after reference [87]). The ‘ideal’ cristobalite structure withFd3m symmetry
is recovered in the limitu(Si1)→ 1/4,u(Si2)→ 0, andx → y → 5/8, z→ 1/8 for O2. In
the tetragonalI 4̄2d structure the axial ratio deviates only slightly from the valuec/a = √2
for which the doubled cell becomes cubic. Si atoms occupy Wyckoff positions (4a) in the
tetragonalI 4̄2d cell (corresponding to the idealFd3m positions in the limitc/a → √2).
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Figure 9. The variations of the Si–O bond lengths and of the Si–O–Si bond angle ofα-cristobalite.
The key to the symbols is the same as for figure 8.

The O atoms occupy positions (8d) with coordinates(x, 1/4, 1/8) andx = 0.079. Fd3m
symmetry is recovered in the limitx → 0. If, neglecting the small tetragonal strain, the
structure is set up in the doubled cubic cell (rotated by 45◦ around the tetragonal axis), the Si
positions are compatible withP213 symmetry, but the O positions are not. Hence a possible
P213↔ I 4̄2d transformation implies a change of the Wyckoff positions of the O atoms and
not only a mere change of the internal parameters as for theI 4̄2d → Fd3m transition.

The optimized internal parameters are summarized in table 4. For both theP213 and
I 4̄d2 phases, the LDA equilibrium volume is in good agreement with experiment, whereas for
the idealizedFd3m structure a much larger equilibrium volume is predicted. For theI 4̄d2
structure, the calculated Si–O distances agree with experiment within an error of 0.014 Å;
the O–Si–O bond angles are accurate to within 2◦. A larger error of 5.2◦ is found for the
Si–O–Si angle. For theP213 lattice on the other hand, our optimized structure is much closer
to a network of regular tetrahedra than the experimental structure of Barth [83]. We think
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Figure 10. The variations of the total energies ofα-cristobalite (P41212) andβ-cristobalite (P213,
I 4̄2d andFd3m) with volume.
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Table 4. Structural parameters, bond lengths (in Å), bond angles (in degrees), cohesive energies
and bulk moduli forβ-cristobalite assumingP213, I 4̄2d or Fd3m symmetry.

(a)P213

Experimenta GGA LDA

a (Å) 7.159 7.2679 7.13
V /SiO2 (Å3) 45.86 47.99 45.31
Si1(u) 0.255 0.2722 0.2758
Si2(u) −0.008 0.0168 0.0184
O1(x) 0.125 0.1443 0.1470
O2(x) 0.66 0.6388 0.6391
O2(y) 0.66 0.6502 0.6552
O2(z) 0.06 0.0645 0.0557

Si1–O1 1.6120 1.6101 1.5912
Si1–O2 1.6084 1.6155 1.5964
Si2–O1 1.6492 1.6059 1.5872
Si2–O2 1.6641 1.6158 1.5984
O2–Si1–O2 101.3 109.2 108.9
O1–Si1–O2 116.7 109.7 110.0
O2–Si2–O2 119.2 109.8 109.8
O1–Si2–O2 95.1 109.2 109.1
Si1–O2–Si2 137.2 154.2 150.6
Si1–O1–Si2 180 180 180

E0 (eV/SiO2) −23.8575 −25.9316
B0 (GPa) 16 12.5 14.0
B ′0 4.2 7.1

(b) I 4̄d2 andFd3m

I 4̄2d Fd3m

Experimentb GGA LDA GGA LDA

a (Å) 7.131 7.226 7.1153 7.417 7.352
c/a 1.0146 1.0186
V /SiO2 (Å3) 45.33 47.85 45.86 51.01 49.67
O(x) 0.079 0.0896 0.0862

Si–O 1.611 1.6131 1.5984 1.6059 1.5918
O–Si–O 107.8 108.8 108.7 109.5 109.5
O–Si–O 112.9 110.8 110.9
Si–O–Si 146.7 154.1 151.8 180 180

E0 (eV/SiO2) −23.8636 −25.9375 −23.8396 −25.9036
B0 (GPa) 21.7 27.77 119.5 128.6
B ′0 3.8 5.1 4.3 4.9

a Reference [87].
b Reference [86]. (The experimental data refer to theI 4̄2d setting.)

that the large differences in the Si–O distances (up to 0.065 Å) and in the tetrahedral angles
(up to 14◦), as well as the exceptionally low Si–O–Si bond angle of 137.2◦, are unrealistic.
Energetically we find the low-symmetry variants to be degenerate within the accuracy of our



3850 Th Demuth et al

calculations (1E 6 6 meV/SiO2), but lower in energy than the high-symmetry structure by
≈34 meV/SiO2. Note that the energetic degeneracy of theP213 andI 4̄d2 phases depends on
a careful optimization with respect to all parameters.
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Figure 11. The variations of the internal parametersu(Si1), u(Si2), x(O1), x(O2), y(O2) and
z(O2) of β-cristobalite (P213) with volume calculated with the LDA.y(O2) = x(O2) = 5

8 ,

x(O1) = z(O2) = 1
8 , u(Si1) = 1

4 andu(Si2) = 0 correspond to the limitingFd3m structure.

I

Figure 12. The variations of the internal parametersx(O1), x(O2) andy(O1) of β-cristobalite
(I 4̄2d) with volume. LDA results only.x(O2) + 1

2 = x(O1) = 5
8 andy(O1) = x(O2) correspond

to the limitingFd3m structure.

Figure 10 shows the optimized total energy of all three structural variants as a function
of volume. The calculations have been performed using the same 3× 3× 3 grid as forα-
cristobalite. This is the central result of our study ofβ-cristobalite. We find that at volumes
larger than about 51 Å3/SiO2 unit both the simple cubicP213 and the tetragonalI 4̄2d structures
relax to face-centredFd3m. In the range between 45 Å3 and 51 Å3 the optimizedP213 and
I 4̄2d structures are energetically degenerate (but not structurally identical); at volumes lower
than 45 Å3 theP213 structure is favoured. Figures 11 and 12 show the variations of the internal
parameters of the two structures as functions of volume—in both cases we find a continuous
transition to the high-symmetryFd3m structure. Figure 13 shows for theP213 structure the



Polymorphism in silica studied in the LDA and GDA 3851

Figure 13. The variations of the Si–O bond lengths and of the Si–O–Si bond angles inβ-cristobalite
(P213) with volume. Full curves, triangles, squares and circles: LDA; broken curves, crosses and
stars: GGA.

Figure 14. The variations of the O–Si–O and of the Si–O–Si bond angles inβ-cristobalite (I 4̄2d)
with volume.

variations of the Si–O bond lengths and of the Si–O–Si angles with volume and figure 14
the variations of the Si–O–Si and O–Si–O angles for theI 4̄2d structure with volume. The
important result is that, as in the case ofα-cristobalite, the tetrahedral O–Si–O angles remain
almost constant while the Si–O–Si angles are strongly volume dependent. The Si–O bond
lengths show only little variation, the differences between the inequivalent Si–O distances in
theP213 structure decreasing on expansion. Note that the differences in the bond lengths have
already vanished before the Si–O–Si angle reaches the value of 180◦ characteristic for the
high-symmetry structure. Thus the breaking of theFd3m symmetry results from the stiffness
of the SiO4 units under compression. We also find, as for the other structures, that the LDA
leads to an accurate prediction of the volume, while the GGA leads to a∼5% overestimate.
At fixed volume, the structural predictions of LDA and GGA are identical.

Our result that on expansion theI 4̄2d structure relaxes towards the ‘ideal’Fd3msymmetry
agrees with the conclusions of Liuet al [35]. However, Liuet al found that theP213 symmetry
should have a much higher energy. The discrepancy could be due to an insufficient structural
optimization or to the restriction of the Brillouin-zone integration to a singleEk-point.
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3.2.3. Theα → β transition in cristobalite. Figure 10 shows the variations of the total
energies of theα(P41212), β(P213 or I 4̄2d) and ideal—β(Fd3m) phases with volume. The
α-phase is lower in energy than theβ-phase by only 0.0012 eV/SiO2 unit in the LDA; however,
in the GGA theβ-phase is lower by 0.0056 eV/SiO2 unit. The important result is that theα-
cristobalite structure and the two structural variants ofβ-cristobalite can be energetically almost
degenerate over a rather wide range of densities.

Various scenarios have been developed for the mechanism of the phase transition. Acc-
ording to O’Keefe and Hyde [92], theα → β transition in cristobalite can be described in
terms of a rotation of the tetrahedra by a tilt angleδ, in analogy to theα → β transition in
quartz. In the most general case allowed for theα-phase, the SiO4 tetrahedra are not regular,
their symmetry being reduced from Td to C2 (with the twofold axis parallel to [110] in the basal
plane). The tilt angle measures the rotations about this axis; in the limit of regular tetrahedra
the change in all lattice parameters can be expressed in terms of the tilt angle. Compared to
that for α-quartz, the tilt angle in ‘low’-cristobalite is substantially larger (δ(exp) = 24.8◦

according to reference [90];δ(theor) = 22.5◦). Our results for the internal parameters as
functions of volume (see figure 8) demonstrate that at expanded volume there is the possibility
of a continuousα(P41212) → β(Fd3m) transition, but the barrier for the relaxation of the
α-phase into theβ-phase actually vanishes only at volumes lower than the equilibrium volume
of the high-symmetry phase. As for theα→ β transition in quartz, we find that the calculated
variations of the axial ratio and tilt angleδ close to the transition conform with the expectations
of Landau theory(c/a ∝ (V −V0), δ ∝ (V −V0)

1/2, whereV0 is the volume at the transition).
Again the mechanism for theα → β transition can be interpreted in terms of the RUM

concept. Inβ-cristobalite a large number of RUMs have been identified [93]. The RUM at the
X point (symmetry X4) gives rise to both the translations and the rotations of the tetrahedra
required to produce theα-phase, the amplitude of the RUM being proportional to the tilt angle
δ. The I 4̄d2 structure can be generated from the idealFd3m structure by condensation of
the0−5 zone-centre RUM [93]. The important result of the present study is that all structures
describable in terms of a condensation of RUMs of the idealizedβ-cristobalite structure are
energetically degenerate over a substantial range of densities (between 45 and 50 Å3/SiO2;
see figure 10), but at volumes below≈43 Å3 the α-phase is energetically preferred over
the distortedβ-variants. These structures have been described either as truly dynamically
disordered phases (with random structural fluctuations describable in terms of a condensation
of RUMs) or as composed of static domains of the distorted phases. The energetic degeneracy
demonstrated by our calculations argues against a static multidomain model [35,86] and also
against dynamically disordered models assuming a hopping of the O atoms between symmetry-
equivalent positions. Such a scenario would require that the dynamic behaviour is dominated
by a single RUM (in this case the soft X4 phonon). Our result, however, suggests the presence
of many energetically equivalent RUMs and explains the observed similarity of the dynamical
properties ofβ-cristobalite with those of amorphous silica and other orientationally disordered
crystals: the common feature is a potential energy surface with a large number of local minima
of comparable depth.

3.3. Tridymite

Tridymites are low-density polymorphs of silica occurring in a variety of different crystal
structures. The structure of ideal high-temperature (β-) tridymite is closely related to the
idealβ-cristobalite structure (cf. the classification of Dmitrievet al [65]). The basic building
blocks are sheets of SiO4 tetrahedra arranged in hexagonal rings. Rings in successive sheets are
directly superposed, with the result that large open pipes are formed perpendicular to the sheets
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(a) (b)

Figure 15. Representations of the crystal structures of idealized (space groupP63/mmc) (a) and
orthorhombic (space groupC2221) (b) tridymite.

(figure 15) and related by a mirror symmetry. Hence inβ-tridymite the stacking sequence
of the layers of tetrahedra is ABAB· · · [49], whereas in idealized (Fd3m) β-cristobalite
the stacking sequence is ABCABC· · · along the [111] axis of the cubic cell [82, 85]. The
space-group symmetry of idealizedβ-tridymite isP63/mmc; Si atoms occupy positions (4f )
with coordinates(1/3, 2/3, w) andw = 0.0620, O1 atoms positions (2c) with coordinates
(1/3, 2/3, 1/4) and O2 atoms occupy positions (6g) with coordinates(1/2, 0, 0) (after
reference [49]). Kihara (references [49,94]) also discussed a model with split oxygen positions
for ideal tridymite leading to an orthorhombic(Cc2m) cell with a = √3ah, b = bh, c = ch
(the subscript referring to the hexagonal cell) and eight formula units per cell. At decreasing
temperature, the crystal symmetry of tridymite is gradually lowered to orthorhombicC2221

(reference [95]),P212121 (reference [96]), monoclinicCc (references [97, 98]) and finally
triclinic (reference [49]). The monoclinic cell described by Kato and Nukui [98] contains
48 formula units and the triclinic cell of Konnert and Appleman [99] 320 formula units. The
present study is restricted to the hexagonal and orthorhombic (C2221) high-temperature forms.
In the ideal hexagonal structure at fixed volume only the axial ratio and the internal parameter
w have to be determined. The calculations have been performed with a 3× 3 × 3 grid
of Ek-points, corresponding to eight irreducible points. The results are summarized in table 5.
Surprisingly, the LDA predicts an equilibrium volume that is 9.5% larger than the experimental
volume calculated from the lattice parameters of Kihara [49], measured at a high temperature
of T = 733 K. The GGA volume is 13.2% greater than the experimental volume. The axial
ratio and internal parameter on the other hand are almost identical to the experimental values
and nearly independent of the volume.

In the orthorhombicC2221 structure ofβ-tridymite, the Si atoms occupy Wyckoff
positions (8c) with coordinates (u, v,w). Oxygen atoms are located at positions (4a) with
coordinates(x, 0, 3

4), O2 atoms at positions (4b) with coordinates(0, y, 1
2) and O3 atoms at

positions (8c) with coordinates (x, y, z). The idealized hexagonal structure ofβ-tridymite
is recovered in the limitu(Si) → 1

6, v(Si) → 1
2, w → 7

16, x(O1) → 1
3, y(O2) → 1

2,
x(O3) → y(O3) → 1

4, z(O3) → 1
2. In the orthorhombic structure, pairs of SiO4 tetrahedra

joined at the O1 sites are alternately tilted byδ = ±8◦ relative to thec-axis, resulting in a



3854 Th Demuth et al

Table 5. Structural parameters, bond lengths (in Å), bond angles (in degrees), cohesive energies
and bulk moduli for hexagonalβ-tridymite (P63/mmc).

Experimenta GGA LDA

a (Å) 5.035, 5.052 5.2484 5.1908
c (Å) 8.220, 8.27 8.5683 8.4702
c/a 1.632, 1.637 1.632 1.6317
V /SiO2 (Å3) 45.11, 45.39 51.10 49.41
Si(w) 0.062 0.0624 0.0624

Si–O 1.555 1.6068 1.5889
Si–O 1.546 1.6064 1.5886
O–Si–O 109.4 109.5 109.5
O–Si–O 109.7 109.4 109.5

E0 (eV/SiO2) −23.8446 −25.9194
B0 (GPa) 130.5 139.59
B ′0 3.14 4.7

a References [6,49].

slight flexure of the tetrahedra sharing a triangular face formed by the O2 and O3 atoms. In the
hexagonal phase these tetrahedra are aligned along thec-axis. The distortion results in Si–O–
Si angles around O2 and O3 that are significantly lower than 180◦, but still large compared to
the normal values found in quartz (143.7◦ in theα-phase, 153.0◦ in β-quartz) and cristobalite
(146.5◦ (α), 146.6◦ (β-I 4̄d2)). The bond distances are also substantially smaller (weighted
average: 1.56 Å) than in quartz or cristobalite.

The structural optimization in the LDA predicts a very accurate equilibrium volume, but
the calculated Si–O bond lengths are on average≈0.03 Å larger than found in the experiment.
The larger Si–O distances are compensated by a larger deviation of the Si–O–Si bond angles
from the idealized value of 180◦. This concerns in particular the Si–O3–Si angle where we
calculate a value of 150.4◦ compared to the experimental result of 165.2◦ (see table 6). In the
GGA we find again a larger equilibrium volume, but essentially the same structure at fixed
volume. At equilibrium, the structural energy difference is 11 meV/SiO2 unit in the LDA, but
only 4 meV in the GGA (the orthorhombic structure being lower in energy). As for quartz
and cristobalite, we note on expansion a continuous convergence of all structural parameters
of orthorhombic tridymite towards the limiting values defining the hexagonal structure. The
variations of the tilt angleδ and of Si–O3–Si bond angle in the orthorhombic phase are shown
in figure 16. Figure 17 shows the variations of the total energies in the two phases with volume.
The two diagrams taken together demonstrate the possibility of a continuous phase transition at
expanded volumes. However, figure 16 illustrates also the difficulties associated withab initio
structural optimizations close to a second-order phase transition. According to Landau theory,
the tilt angle (the order parameter of the transition) should vary asδ ∝ (V − V0)

1/2. The
calculated values follow roughly the expected behaviour, but we find it difficult to relax the
low-symmetry phase exactly toδ = 0 characteristic for the high-symmetry phase. The reason
for this is that the restoring forces are very small. To obtain an exactly converged result, all
parameters of the calculation (cut-off values for total energies, forces, number ofEk-points etc)
would have to be set to extreme values, resulting in a very high computational effort.

In view of the very good agreement between the LDA and experiment (1V 6 2%) for
both the ‘low’- and ‘high’-forms of quartz and cristobalite (and also for keatite, coesite and
stishovite; see below), the disagreement that we find for both hexagonal and orthorhombic
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Table 6. Structural parameters, bond lengths (in Å), bond angles (in degrees), cohesive energies
and bulk moduli for orthorhombic tridymite(C2221). δ is the tilt angle of the SiO4 tetrahedra
relative to their orientation in hexagonalβ-tridymite (in degrees).

Experimenta GGA LDA

a (Å) 8.74 9.1132 8.9766
b (Å) 5.05 5.0960 5.0084
c (Å) 8.24 8.3459 8.1786
c/a 0.9427 0.9158 0.9111
b/a 0.5778 0.5591 0.5579
V /SiO2 (Å3) 45.46 48.45 45.96
Si(u, v,w) 0.1684, 0.5358, 0.4385 0.1669, 0.5734, 0.4373 0.1671, 0.5821, 0.4374
O1(x, y, z) 0.3336, 0.0, 0.75 0.3302, 0.0, 0.75 0.3301, 0.0, 0.75
O2(x, y, z) 0.0, 0.5597, 0.5 0.0, 0.5839, 0.5 0.0, 0.5961, 0.5
O3(x, y, z) 0.2547, 0.3029, 0.5213 0.2587, 0.3588, 0.5388 0.2576, 0.3693, 0.5435

Si–O1 1.5644 1.6088 1.5868
Si–O2 1.5615 1.6093 1.5866
Si–O3 1.5530 1.6159 1.5965
O1–Si–O2 108.7 109.8 109.6
O1–Si–O3 110.7 110.4 110.2
O2–Si–O3 111.9 109.9 109.6
Si–O1–Si 178.7 178.0 178.2
Si–O2–Si 171.2 176.2 175.1
Si–O3–Si 165.2 152.2 150.4

δ 8 11.3 13.5

E0 (eV/SiO2) −23.8485 −25.9302
B0 (GPa) 25.4 30.8
B ′0 2.3 4.1

a Reference [95].

Figure 16. The variations of the tilt angle and of the Si–O3–Si bond angle in orthorhombic
tridymite with volume. δ = 0◦ and Si–O3–Si= 180◦ correspond to the limiting structure of
hexagonal tridymite. Full curves and triangles: LDA; broken curves and crosses: GGA.

tridymite is certainly surprising. To the best of our knowledge, no previous LDA calculations
have been performed on this system. A calculation based on empirical pair potentials by Keskar
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Figure 17. The energy–volume relations for hexagonal and orthorhombic tridymite calculated
using the LDA (a) and GGA (b). Triangles and full curves: hexagonal tridymite; open symbols
and broken curves: orthorhombic tridymite.

and Chelikowsky [31] predicts a volume even larger than our GGA result. The experimental
structure ascribed to ideal hexagonalβ-tridymite is also surprising because:

(a) It leads to the same short Si–O bond length of 1.54 Å and Si–O–Si bond angles of 180◦ as
have already been criticized in Wyckoff’s [82] original proposal of a cubic structure for
β-cristobalite. Unlike in all other structures, the Si–O bond lengths vary strongly under
compression, while the bond angles remain fixed by symmetry.

(b) The LDA predictions for the equilibrium volume ofβ-tridymite (ABAB· · · stacking
sequence) andβ-cristobalite withFd3m symmetry (ABCABC· · · stacking sequence)
differ only by about 0.3 Å3/SiO2 unit; the structural energy difference is1E(β-
cristobalite− hexagonalβ-tridymite) ∼ 0.015 eV (LDA) or∼0.005 eV (GGA)—hence
the predictions are consistent in view of the close structural relationship.

(c) The calculation predicts a very large bulk modulus ofB0 = 139.6 GPa, i.e. ten times larger
than for the denser cristobalite phases and even larger than that ofβ-quartz which has the
lowest compressibility of all silica polymorphs. Only for the cubic ‘ideal’β-cristobalite do
we find a similar value. Such a high value can only be the result of symmetry constraints.

In the distorted orthorhombic form, the Si–O distances predicted by the LDA are 0.02 to 0.04 Å
larger than found in the experiment; at the almost correct density, this is possible only at the
expense of stronger distortions of the Si–O3–Si angle. Dollase [95] has attempted to reconcile
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the short apparent Si–O distances in orthorhombic tridymite with the known stiffness of the
Si–O bonds in terms of correlated atomic motions of the oxygens (with highly anisotropic
thermal ellipsoids for the O atoms ‘riding on silicon’). Our calculations confirm that in the
static structure of orthorhombic tridymite, the Si–O distances are under considerable strain.
This strain can be released only by a further lowering of the crystalline symmetry. At the
moment, a better understanding of the structures of ‘low’-tridymite must be left to future
investigations.

3.4. Keatite

Keatite is a polymorph of silica with a density intermediate between those ofα-cristobalite and
β-quartz. It appears not to have a field of thermodynamic stability, but may be synthesized by
crystallization at moderate temperature (200◦C to 400◦C) and pressures (2 to 3 kbar). Keatite
is also found, although rarely, in nature [50].

Figure 18. A representation of the crystal structure of keatite (space-group symmetryP41212).

The structure consists of corner-sharing tetrahedra forming fivefold, sevenfold and
eightfold rings (see figure 18). The space-group symmetry isP41212, like for α-cristobalite.
The primitive cell contains twelve SiO2 units. Si1 atoms occupy positions (4a) with coordinates
(u, u,0) and Si2 atoms occupy positions (8b) with coordinates (u, v,w); O1, O2 and O3
atoms occupy positions (8b) with coordinates (x, y, z). The values of the internal parameters
are given in table 7. At fixed volume, fourteen independent structural parameters have to be
determined. The calculations have been performed on a 3× 3× 3 Ek-point grid corresponding
to six irreducible points.

The equilibrium volume calculated within the LDA differs from the experimental value by
only 0.6%; the axial ratio is also correctly predicted. The GGA overestimates the volume by
6.5% and leads also to a slightly larger axial ratio. If the volume is varied, the lattice constant
a remains almost constant. The expansion leads to a pronounced elongation of the tetragonal
cell. Again, LDA and GGA yield identical structures at a given volume (see figure 19). Hence
we can expect a pronounced anisotropy of the thermal expansion, as inα-cristobalite with the
same space-group symmetry. The equilibrium volume and total energy of keatite are slightly
lower than those ofβ-quartz, but larger than those ofα-quartz. The relatively large bulk
modulus is also intermediate between those of the two quartz polymorphs. The optimized
structural parameters, as well as the bond lengths and angles, are in good agreement with
experiment (see table 7).
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Table 7. Structural parameters, bond lengths (in Å), bond angles (in degrees), cohesive energies
and bulk moduli of keatite(P41212).

Experimenta,b GGA LDA

a (Å) 7.464 7.5646 7.4669
c (Å) 8.620 8.9333 8.5639
c/a 1.1548 1.1809 1.1469
V /SiO2 (Å3) 40.02 42.6 39.79
Si1(u) 0.4100 0.4217 0.4150
Si2(u, v,w) 0.3260, 0.1200, 0.2480 0.3315, 0.1234, 0.2333 0.3251, 0.1199, 0.2496
O1(x, y, z) 0.4450, 0.1320, 0.4000 0.4568, 0.1192, 0.3785 0.4433, 0.1252, 0.4037
O2(x, y, z) 0.1170, 0.1230, 0.2960 0.1282, 0.1115, 0.2869 0.1191, 0.1162, 0.2976
O3(x, y, z) 0.3440, 0.2970, 0.1430 0.3623, 0.3074, 0.1443 0.3628, 0.2944, 0.1467

Si1–O2 1.6140 1.6162 1.5952
Si1–O3 1.5727 1.6163 1.5943
Si2–O1 1.5854 1.6067 1.5888
Si2–O2 1.5701 1.6136 1.5921
Si2–O3 1.6070 1.6197 1.5975
O2–Si1–O3 114.2 110.4 110.6
O3–Si1–O3 106.2 109.8 107.6
O1–Si2–O1 112.1 108.5 108.6
O1–Si2–O2 109.2 108.7 108.8
O1–Si2–O3 111.8 109.2 109.9
O2–Si2–O3 102.3 109.3 109.1
Si2–O1–Si2 155.8 157.6 153.1
Si2–O2–Si1 149.3 150.4 149.3
Si1–O3–Si2 155.3 153.0 159.8

E0 (eV/SiO2) −23.8282 −25.9416
B0 (GPa) 48.6 52.2
B ′0 3.87 4.47

a Reference [6].
b Reference [50].
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3.5. Coesite

Coesite is a high-pressure polymorph of silica with a rather complex monoclinic structure. The
space-group symmetry has been described asC2/c by Smythet al[51] and Geisingeret al[100]
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and asP21/c by Kirfe et al [101]. Because of the properties of the lattice constants (a ≈ c and
β ≈ 120◦), the symmetry can also be characterized as pseudohexagonal. Within theP21/c

setting, the unit cell contains 16 SiO2 units. All Si and O atoms occupy Wyckoff positions (4e)
with three independent internal parameters. Hence at fixed volume a complete optimization
of the structure requires the minimization of the total energy with respect to 40 independent
parameters. In theC2/c structure Si1 and Si2 atoms occupy Wyckoff positions (8f ) with
coordinates (u, v,w), O1 atoms occupy positions (4a) with coordinates(0, 0, 0), O2 atoms
occupy positions (4e) with coordinates (1

2, y,
3
4) and O3 to O5 atoms occupy positions (8f )

with three independent positional parameters. Because of the higher symmetry, only a total-
energy minimization with respect to 20 independent parameters is required. A projection of
theP21/c structure is shown in figure 20. The connectivity of the network of SiO4 tetrahedra
is very similar in theC2/c variant. In coesite the SiO4 tetrahedra form two kinds of four-
membered ring; one is approximately parallel to (101), the other to (110). The calculations
have been performed on a 3× 3× 3 Ek-point grid corresponding to ten irreducible points (for
both structures).

Figure 20. A representation of the crystal structure of coesite (space-group symmetryP21/c).

The results of the structural optimizations are given in table 8 forC2/c and table 9 for
P21/c. For the more symmetricC2/c lattice the LDA underestimates the equilibrium volume
by about 2.4%, whereas the GGA leads to a 3% overestimate. The lattice parameters and
monoclinic angle are predicted with comparable accuracy. The difference between the shortest
and the longest Si–O distances calculated within the LDA agrees within≈0.015 Å with the
experimentally observed difference, whereas the larger equilibrium volume of the GGA allows
for a smaller difference with a maximum of≈0.01 Å. The distortions of the intra-tetrahedral
angles are small, but it is remarkable that even these small variations are predicted with good
accuracy. Because of the centrosymmetric position of the O1 atoms, the Si1–O1–Si1 bonds
are aligned, whereas the other Si–O–Si bond angles vary between 136.5◦ and 149.6◦—again
it is remarkable that within the LDA all angles are correct within a maximum error of 0.7◦.

For theP21/c structure the LDA predicts the equilibrium volume with an accuracy of
1%, whereas the GGA leads to an overestimate of about 4.5%. The predictions of the axial
ratios and of the monoclinic angle are of comparable accuracy. Because of the low symmetry,
there are 16 non-equivalent Si–O distances varying between 1.581 Å and 1.614 Å (LDA), in
good agreement with the experimentally determined distances spreading between 1.583 Å and
1.621 Å (except the Si2–O3 and Si3–O4 distances). The intra-tetrahedral angles vary between
107.7◦ and 110.5◦ (LDA) and between 105.9◦ and 111.7◦ (experiment), respectively. There
are eight inter-tetrahedral Si–O–Si bond angles varying between 137.0◦ and 149.7◦ (LDA) and
between 136.4◦ and 150.2◦ (experiment) and a Si1–O7–Si2 bond angle close to 180◦. All inter-
tetrahedral angles increase on expansion, with the Si3–O8–Si4 angle showing the strongest
variation. This angle describes the concatenation of the SiO4 tetrahedra parallel to thec-axis
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Table 8. Structural parameters, bond lengths (in Å), bond angles (in degreees), cohesive energies
and bulk moduli for coesite(C2/c).

Experimenta GGA LDA

a (Å) 7.1357 7.2419 7.0672
b (Å) 12.3835 12.467 12.2907
c (Å) 7.1859 7.2327 7.14057
c/a 1.0070 0.9987 1.01037
c/b 0.5802 0.5801 0.5809
β (deg) 120.375 120.169 120.416
V /SiO2 (Å3) 34.23 35.28 33.43
Si1(u, v,w) 0.1399, 0.1084, 0.0721 0.1428, 0.1072, 0.0736 0.1386, 0.1087, 0.0719
Si2(u, v,w) 0.5072, 0.1578, 0.5415 0.5073, 0.1580, 0.5402 0.5069, 0.1574, 0.5419
O1(x, y, z) 0.0, 0.0, 0.0 0.0, 0.0, 0.0 0.0, 0.0, 0.0
O2(x, y, z) 0.5, 0.1152, 0.75 0.5, 0.1175, 0.75 0.5, 0.1140, 0.75
O3(x, y, z) 0.2640, 0.1245, 0.9383 0.2710, 0.1195, 0.9441 0.2628, 0.1256, 0.9378
O4(x, y, z) 0.3127, 0.1031, 0.3276 0.3101, 0.1057, 0.3289 0.3132, 0.1029, 0.3272
O5(x, y, z) 0.0190, 0.2117, 0.4766 0.0106, 0.2117, 0.4781 0.0203, 0.2119, 0.4745

Si1–O1 1.5960 1.6085 1.5818
Si1–O3 1.6149 1.6239 1.6068
Si1–O4 1.6147 1.6215 1.6043
Si1–O5 1.6262 1.6293 1.6137
Si2–O2 1.6135 1.6245 1.6026
Si2–O3 1.6178 1.6238 1.6069
Si2–O4 1.6089 1.6150 1.5953
Si2–O5 1.6229 1.6284 1.6139
O1–Si1–O3 110.59 110.3 110.5
O1–Si1–O4 109.14 110.8 109.0
O1–Si1–O5 109.77 109.7 110.2
O3–Si1–O4 110.43 110.0 110.2
O3–Si1–O5 107.91 108.3 108.0
O4–Si1–O5 108.98 107.7 108.9
O2–Si2–O3 109.75 109.8 109.9
O2–Si2–O4 109.4 109.3 109.7
O2–Si2–O5 110.09 110.3 109.9
O3–Si2–O4 108.79 108.6 108.8
O3–Si2–O5 109.33 109.6 109.0
O4–Si2–O5 109.45 109.2 109.5
Si1–O1–Si1 180 180 180
Si2–O2–Si2 141.81 143.8 141.1
Si1–O3–Si2 144.11 145.1 144.2
Si1–O4–Si2 149.66 150.7 149.9
Si1–O5–Si2 136.54 139.6 136.2

E0 (eV/SiO2) −23.7318 −25.9522
B0 (GPa) 91.2 94.3
B ′0 4.5 4.8

a Reference [51].

whereas the other angles characterize the angles in the four-membered rings of tetrahedra (see
also figure 20).

One of the characteristic properties of coesite is the strong anisotropy of the pressure-
induced contraction of the lattice constants and the strong anisotropy of the thermal expansion.
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Table 9. Structural parameters, bond lengths (in Å), bond angles (in degrees), cohesive energies
and bulk moduli for coesite(P21/c).

Experimenta GGA LDA

a (Å) 7.098, 7.135, 7.1367 7.235 7.076
b (Å) 12.334, 12.383, 12.3695 12.485 12.297
c (Å) 7.148, 7.185, 7.1742 7.241 7.137
c/a 1.007, 1.007, 1.005 1.000 1.008
c/b 0.579, 0.580, 0.5799 0.5804 .5804
β (deg) 120.10, 120.37, 120.34 120.19 120.29
V /SiO2 (Å3) 33.83, 34.23 35.34 33.52
Si1(u, v,w) 0.6090, 0.3585, 0.9314 0.6077, 0.3572, 0.9273 0.6107, 0.3583, 0.9293
Si2(u, v,w) 0.8894, 0.3582, 0.5758 0.8926, 0.3572, 0.5744 0.8887, 0.3585, 0.5731
Si3(u, v,w) 0.2568, 0.4086, 0.0442 0.2566, 0.4082, 0.0399 0.2559, 0.4074, 0.0419
Si4(u, v,w) 0.2438, 0.4074, 0.4628 0.2438, 0.4080, 0.4613 0.2443, 0.4073, 0.4605
O1(x, y, z) 0.4391, 0.3548, 0.6742 0.4413, 0.3546, 0.6717 0.4388, 0.3530, 0.6738
O2(x, y, z) 0.4856, 0.3726, 0.0647 0.4781, 0.3694, 0.0551 0.4843, 0.3735, 0.0614
O3(x, y, z) 0.7319, 0.4648, 0.5184 0.7390, 0.4619, 0.5200 0.7302, 0.4621, 0.5216
O4(x, y, z) 0.7666, 0.4581, 0.9749 0.7614, 0.4618, 0.9803 0.7689, 0.4619, 0.9780
O5(x, y, z) 0.0184, 0.3738, 0.4459 0.0228, 0.3690, 0.4471 0.0161, 0.3735, 0.4416
O6(x, y, z) 0.0597, 0.3530, 0.8297 0.0596, 0.3546, 0.8296 0.0598, 0.3537, 0.8288
O7(x, y, z) 0.7514, 0.2515, 0.0012 0.7498, 0.2499, 0.002 0.7497, 0.2498, 0.0020
O8(x, y, z) 0.2480, 0.3662, 0.2519 0.2505, 0.3697, 0.2507 0.2508, 0.3654, 0.2515

Si1–O1 1.6168 1.6231 1.6039
Si1–O2 1.5945 1.6222 1.6040
Si1–O4 1.5840 1.6308 1.6142
Si1–O7 1.5835 1.6081 1.5812
Si2–O3 1.6394 1.6302 1.6124
Si2–O5 1.6095 1.6228 1.6064
Si2–O6 1.6000 1.6221 1.6036
Si2–O7 1.5974 1.6088 1.5814
Si3–O2 1.6179 1.6238 1.6063
Si3–O4 1.6517 1.6289 1.6136
Si3–O6 1.6212 1.6170 1.5956
Si3–O8 1.6048 1.6219 1.6004
Si4–O1 1.5894 1.6178 1.5952
Si4–O3 1.5844 1.6286 1.6127
Si4–O5 1.5976 1.6240 1.6057
Si4–O8 1.6055 1.6221 1.6013
Si1–O1–Si4 150.2 149.7 149.6
Si1–O2–Si3 143.4 145.4 144.5
Si2–O3–Si4 138.2 139.9 137.0
Si1–O4–Si3 136.4 139.6 137.2
Si4–O5–Si2 145.6 145.7 144.8
Si2–O3–Si3 149.2 149.7 149.7
Si3–O8–Si4 142.5 145.7 142.4
Si1–O7–Si2 177.7 179.3 179.6

E0 (eV/SiO2) −23.7327 −25.9521
B0 (GPa) 88.3 92.6
B ′0 5.6 4.26

a Reference [6].
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Increasing the pressure from 0 to 5.2 GPa leads to a contraction ofa by 2%, whereasb andc
change only by 1.1% and 0.9% respectively (reference [102]). Indeed, figure 21 demonstrates
that in theC2/c structurea depends more strongly on the cell volume thanb and c, the
monoclinic angle remaining almost constant. A similar anisotropy is predicted for theP21/c

structure. Within the LDA, the total energies of the two structural variants agree to within
0.1 meV/SiO2 unit; in the GGA theP21/c structure is lower in energy by 0.9 meV/SiO2.
Both values are at, or even below, the limit of accuracy of our calculation, so the conclusion is
that the two structures are essentially energetically degenerate. The calculated bulk modulus
is more than twice as large as that forα-quartz and only 30% lower than that ofβ-quartz.
The bulk modulus calculated for theP21/c structure is slightly lower, in accordance with the
expectation based on the lower symmetry

Unlike for the low-density polymorphs, the gradient corrections have a pronounced
influence on the structural energy differences of coesite. Within the LDA we calculate a
difference of1E = 0.011 eV/SiO2 unit relative to the energy ofα-quartz whereas the
gradient corrections lead to a nearly nine times larger value of1E = 0.094 eV/SiO2

unit, which can be compared to the experimental enthalpy difference extrapolated to 0 K,
1H = 0.05 eV [47]. Hence the gradient corrections will have a strong influence on the
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energetics of the pressure-induced phase transitions. We shall come back to this point in
connection with the coesite/stishovite and quartz/stishovite phase transitions.

3.6. Stishovite

Stishovite was first synthesized in the laboratory [7] and later discovered in meteor craters.
Stishovite is isostructural with rutile (TiO2). The space group isP42/mnm; the unit cell
contains two SiO2 units. Si occupies the octahedral (2a) positions with coordinates(0, 0, 0)and
(1/2, 1/2, 1/2), O the positions (4f ) with coordinates(x, x,0). Each Si atom is octahedrally
coordinated by six O atoms; each O atom is coordinated by three Si atoms. A graphical
representation of the structure of stishovite along theb-axes is given in figure 22. The chemical
bonding is expected to be fundamentally different from that in the tetrahedrally coordinated
low-pressure phases where each Si is surrounded by four O and each O by two Si only. As
a consequence of the different coordinations, the Si–Si and O–O distances decrease at the
pressure-induced transformation from coesite to stishovite, but the Si–O distances increase
substantially. Therefore the stiffness of the Si–O bonds is the driving factor behind the change
from tetrahedral to octahedral coordination.

For a structural optimization at constant volume, only two independent parameters remain
to be determined. Our calculations have been performed using a 4× 4× 4 Ek-point mesh,

Figure 22. A representation of the crystal structure of stishovite (space-group symmetry
P42/mnm).
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Table 10. Structural parameters, bond lengths (in Å), bond angles (in degrees), cohesive energies
and bulk moduli for stishovite(P42/mnm).

Experimenta GGA LDA GGAb LDAb HFc LAPWd

a (Å) 4.179, 4.18 4.2387 4.1636 4.29 4.20 4.15 4.16
c (Å) 2.666, 2.667 2.7005 2.6696 2.68 2.65 2.69 2.66
c/a 0.6380, 0.6382 0.6371 0.6411 0.6247 0.6309 0.6481 0.640
V /SiO2 (Å3) 23.3, 23.31 24.26 23.14 24.66 23.37 23.16 23.01
O(x) 0.3061, 0.3067 0.3071 0.3056 0.292 0.296 0.306 0.306

Si–O 1.76 1.7775 1.7584 1.77 1.76 1.75
Si–O 1.81 1.8412 1.7994 1.87 1.82 1.80
Si–O–Si 130.6 130.6 130.6 132.5 131.7 130.6

E0 (eV/SiO2) −23.1894−25.8596
B0 (GPa) 313 261 293 260 286 324
B ′0 2.8–6 2.8 4.1 3.0 4.6 4.0

a References [103,104].
b Reference [29].
c Reference [46].
d Reference [37].

corresponding to six irreducible special points. Our results are compiled in table 10. The LDA
predicts the equilibrium volume with an accuracy of 0.7%, whereas the GGA overestimates
the volume by 4.2%. Within this small volume change there is almost no variation of the
structural parameters—hence the agreement with experiment (references [103,104]) is equally
good in both approximations. Over a wider range of volumes, we find an appreciable decrease
of the axial ratio on expansion, accompanied by an increase of the internal parameterx (see
figure 23). At fixed volume there is no difference at all between the LDA and GGA predictions.
The theoretical predictions are well confirmed by experiment (references [103, 104]) over a
limited range of pressures. In terms of the local structure, the change of the axial ratio and
internal parameter is reflected in an increasing difference in the Si–O1 and Si–O2 distances on
expansion while the Si–O–Si bond angle remains almost unchanged (see figure 24). This shows
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Figure 24. The variations of the Si–O1 and Si–O2 distances and of the Si–O–Si bond angle in
stishovite as functions of volume. Full curves, triangles and circles represent LDA results; broken
curves and crosses represent GGA results.
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that at zero pressure the apical bonds in the octahedron are longer than the equatorial bonds.
On expansion the octahedron is elongated; on compression the apical bonds eventually become
even shorter than the equatorial bonds. The calculated LDA equation of state is in excellent
agreement with the available experimental data (figure 25). The predicted bulk modulus is also
in good agreement with experiment, while the experimental values for its pressure derivative
scatter too much to allow any conclusion to be reached. We note that the bulk modulus of
stishovite is larger than those of all other oxides with the rutile structure and also larger than
those of any known silicates.
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Figure 25. The equation of state of stishovite. The full curve represents LDA results; the broken
curve represents GGA results. The experimental data are from Liuet al (reference [109], circles),
Sugiyamaet al (reference [103], stars) and Rosset al (reference [104], crosses).

Because of the simplicity of its crystal structure, a number ofab initio calculations of the
structural and cohesive properties of stishovite have been performed. Parket al [36] and Cohen
[37] used the all-electron LAPW method, based on the LDA. A number of pseudopotential-
based LDA calculations have been performed by different groups [29–33]. Hamann [29]
investigated also the influence of generalized-gradient corrections. The good agreement of
the all-electron calculations of Cohen [37] with the present LDA results confirms that our
ultrasoft pseudopotentials are accurate and transferable; the agreement of both his LAPW and
our pseudopotential calculations with the Hartree–Fock calculations of Sherman [46] shows
that the LDA should in principle be adequate. Concerning the influence of gradient corrections,
our results are in essential agreement with those of Hamann [29]. The pseudopotential-
based calculations are in reasonable agreement with the present work. The error in the
equilibrium volume is in the range1V = −0.05 to 0.23 Å3 per SiO2 unit, except for the
results of Keskar and Chelikowsky [31] predicting a somewhat smaller equilibrium volume
(1V = −0.32 Å3/SiO2).

An important result is, as already emphasized by Hamann [29], that the GGA predicts
a much larger structural energy difference betweenα-quartz and stishovite than the LDA:
1E(LDA) = 0.1044 eV/SiO2 unit, 1E(GGA) = 0.6367 eV/SiO2 unit. To check the
influence of the precise form of the gradient corrections, the calculations forα-quartz and
stishovite have been repeated with the Perdew–Becke (PB) [55, 56] functional. The PB
functional leads to even stronger corrections to the LDA: the equilibrium volumes ofα-quartz
and stishovite increase by 0.84 Å3/SiO2 and 0.31 Å3/SiO2 relative to the functional of Perdew
et al (reference [25]); the structural energy difference increases to1E = 0.691 eV/SiO2
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unit. Hamann reports quartz–stishovite energy differences of1E = 0.02 eV/SiO2 (LDA)
and1E = 0.57 eV/SiO2 (GGA); other LDA results include1E = 0.07 eV/SiO2 (Liu
et al, reference [32]) and1E = 0.086 eV/SiO2 (Keskar and Chelikowsky, reference [31]).
A Hartree–Fock calculation by Sherman [46] yields1E = 0.57 eV/SiO2, to be compared
with the experimental estimate of Holmet al [47] 1E ≈ 0.53 eV/SiO2 and the experimental
enthalpy differences at 298 K of 0.51 eV (reference [47]) and of 0.54 eV (reference [48]).

3.7. Pressure-induced phase transitions

Given the structural energy differences and the energy/volume and pressure/volume relations
of the competing phases, the critical pressures for pressure-induced phase transitions may be
determined by equating the free enthalpies (or the enthalpies in the limit of zero temperature)
and the pressures. In an energy/volume diagram this is equivalent to constructing the common
tangent to twoE(V ) curves. Table 11 summarizes the structural energy differences calculated
in the LDA and GGA, figures 26 and 27 the energy–volume relations and figure 28 the enthalpy–
pressure relations forα-quartz, stishovite and coesite.

In the LDA,α-quartz has the lowest total energy; pressure-induced phase transitions at low
temperature to the denser coesite and stishovite phases are possible; all other polymorphs can
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Table 11. Calculated structural energy differences in eV/SiO2 between the silica polymorphs.
Upper right: LDA; lower left: GGA.

Quartz Cristobalite

Stishovite Keatite Coesite α β α β Tridymite

LDA

Stishovite 0 −0.0820 −0.0926 −0.1044−0.0785−0.0791−0.0778−0.0706
Keatite −0.6387 0 −0.0105 −0.0224 0.0035 0.0028 0.0041 0.0114
Coesite G −0.5424 0.0963 0 −0.0118 0.0140 0.0134 0.0147 0.0219
α-quartz G −0.6367 0.0020−0.0943 0 0.0259 0.0252 0.0265 0.0338
β-quartz A −0.6347 0.0040−0.0923 0.0019 0 −0.0006 0.0006 0.0079
α-cristobalite −0.6685 −0.0297 −0.1260 −0.0317−0.0337 0 0.0012 0.0085
β-cristobalite −0.6741 −0.0354 −0.1317 −0.0374−0.0394−0.0056 0 0.0072
Tridymite −0.6591 −0.0203 −0.1166 −0.0223−0.0243 0.0094 0.0150 0

be obtained only at expanded volume at higher temperatures. For theα-quartz→ coesite phase
transition we calculate a critical pressure ofpc(α-coesite) ∼ 0.74 GPa, i.e. a factor of two lower
than that corresponding to the extrapolation of the coexistence line in the phase diagram to zero
temperature. The discrepancy is similar for the metastableα-quartz→ stishovite transition and
to the coesite→ stishovite transition (see table 11). The larger structural energy differences
predicted by the GGA improve substantially on the theoretical estimates for the transition
pressures of theα-quartz→ stishovite and coesite→ stishovite transitions which are now in
better agreement with experiment (see table 12). Concerning the GGA prediction for theα-
quartz→ stishovite transition we note a good agreement with the calculation of Hamann [29].
For theα-quartz→ coesite transitions, however, the GGA corrections overshoot: the critical
pressure is now too high by a factor of almost 2.4. Thus the conclusion is that the much larger
structural energy differences betweenα-quartz and the high-pressure polymorphs resulting
from the GGA are for stishovite much more realistic than the LDA predictions, but for coesite
the discrepancy is about the same in the LDA and in the GGA. However, we must also remember
that the GGA leads to lower values for the bulk modulus and also to lower pressures than the
LDA (which, in this respect, leads to better agreement with experiment). Hence the structural
energy differences resulting from the GGA are probably somewhat too large (cf. also the
comparison with the experimental estimates for theα-quartz→ stishovite1E given in the
last section), but this error is compensated by a less accurate (softer) equation of state.

Table 12. Calculated equilibrium pressures for structural phase transitions (in GPa).

LDA GGA Experiment

α-quartz→ coesite 0.74 4.3 1.8b

α-quartz→ stishovite 1.3 8.0 7.2a

Coesite→ stishovite 1.6 8.7 7.2b

a Reference [48].
b Extrapolated from the coexistence line in the phase diagram of reference [2].

The situation is less clear for the low-density polymorphs. Within the LDA, the
modifications ofα-cristobalite and keatite are higher in energy thanβ-quartz. Hence at
zero temperature the corresponding coexistence lines in the phase diagram should extrapolate
to a negative pressure of∼−0.6 GPa estimated from the common-tangent constructions, in
reasonable agreement with the experimental phase diagram. Within the GGA,α- andβ-quartz
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are energetically almost degenerate, the two cristobalite phases are lower in energy by about
0.03 eV/SiO2 and even tridymite is predicted to be lower in energy by∼0.02 eV/SiO2. Hence
the phase coexistence lines would be expected to extrapolate to small positive pressures, with
β-cristobalite being the stable(p = 0, T = 0) polymorph. Sinceα-cristobalite is also much
softer thanα-quartz, it is not to be expected that the relative stabilities resulting from the static
total-energy calculations could be reversed by the differences in the zero-point vibrational
energies.

In summary we find that the GGA leads to a more realistic description of the high-density
polymorphs, but reverses the order of stability of the low-density polytypes.

4. Discussion and conclusions

We have presented detailed calculations of the structural properties and energetics of silica
in the ‘low’- and ‘high’-quartz, ‘low’- and ‘high’-cristobalite, tridymite, keatite, coesite and
stishovite structures within the local density and generalized-gradient approximations. Our
calculations are based on highly accurate pseudopotentials and rigorous convergence criteria.
We have demonstrated that we are able to reproduce the structural properties of even the
most complex known silica polymorphs with high accuracy. Our calculated equations of
state agree with experiment essentially within experimental uncertainty; the analysis of the
variations of the crystal structures with the unit-cell volume leads to interesting insights into
the mechanism of the structural phase transitions. For the transition between the ‘low’- and
‘high’-phases of quartz, our calculations demonstrate the possibility of a continuous phase
transition. We have also studied different structural variants proposed for ‘high’-cristobalite
and ‘high’-tridymite. The fact that for cristobalite we find all proposed structures energetically
almost degenerate over a rather wide range of densities lends credit to the suggestions [85,96]
that the different variants reported in the literature are due to different sample treatments. We
have also studied the possibilities of transitions between the different structural variants. We
find that the presence of the simple cubic and tetragonal variants ofβ-cristobalite considerably
complicates the scenario for theα→ β transition—while there is a possibility of a continuous
transition from theα- to the ‘ideal’β-phase with theFd3m symmetry, the transition to the low-
symmetryβ-variants being necessarily first order. Similarly, for tridymite our results indicate
that theP63/mmc symmetry is an idealization of the true tridymite structure, in the same
way as in the case for the ideal cristobalite structure. The orthorhombic phase of tridymite is
shown to undergo a continuous transition to the hexagonal structure on expansion. For keatite
we find that the proposed structure is energetically competitive in the density range between
quartz and cristobalite.

Our calculations provide a complete set of bulk moduli for the tetrahedrally coordinated
phases of SiO2. Our results demonstrate that there is a clear connection between the value
of the bulk modulus and the flexibility of the network of the SiO4 tetrahedra. Forβ-quartz
and the idealized structures ofβ-cristobalite (Fd3m) and ‘high’-tridymite (P63/mmc), where
there is no flexibility in the lattice (no ‘soft coordinate’),B0 is of the order of 130–140 GPa.
For α-quartz and the tetragonal (I 4̄2d) version ofβ-cristobalite, where there is one ‘soft
coordinate’ connected with a rigid rotation of the SiO4 tetrahedra, the bulk modulus is about
28 to 35 GPa. With three ‘soft coordinates’ like inα-cristobalite,B0 is of the order of 12 GPa.
The intermediate values ofB0 ∼ 94 GPa for coesite andB0 ∼ 52 GPa for keatite indicate that
although there is formally no soft coordinate, some degrees of freedom have a reduced elastic
energy. The details of this structure property relationship remain to be explored.

Our results show that at fixed volume the local density and generalized-gradient
approximations lead to absolutely identical structural predictions, confirming the similar
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Figure 29. GGA corrections to the total energy (1E, crosses and left-hand scale) and to the
equilibrium volume (1V , circles and right-hand scale) of the silica polytypes. The solid curve is
a guide to the eye emphasizing the trend in the total-energy corrections.

observations made on the crystal structures of the elements from groups IV to VI of the
Periodic Table [20, 28]. The GGA makes an isotropic contribution to the internal pressure,
favouring expansion. This effect is stronger in the more open structures: in stishovite the
gradient corrections expand the volume by 4.2%, inα-quartz they expand it by 6.6% and
in α-cristobalite they expand it by 9.8% (see figure 29). While, with the exception of that
for tridymite, the LDA predictions for the equilibrium volume are accurate within±2%, the
GGA error varies between 4.2% (stishovite) and 9.8% (α-cristobalite). The GGA is also
consistently less accurate for the equation of state, the bulk modulus and, by an indirect effect,
for the structural properties.

The gradient corrections are, however, essential for predicting the pressure-induced phase
transitions: in the LDA the structural energy differences betweenα-quartz, coesite and
stishovite are seriously underestimated and this leads to transition pressures much lower than
in experiment. Figure 29 summarizes the GGA corrections to the equilibrium volume and
total energy. We find that the corrections both to the total energy and to the volume increase
with decreasing density of the silica polymorphs. We have plotted the differences in the
total energies. These are always smaller than the gradient corrections to the total energies
of the free atoms (for reference,1E(LDA–GGA) = −3.33 eV for one Si and two O atoms
together). Hence for the cohesive energy the GGA leads to a reduction which is smaller for
the low-density than for the high-density polymorphs. In contrast to the smooth variation
of 1E(LDA–GGA) with density, the gradient corrections to the equilibrium volume depend
strongly on symmetry constraints:1V (LDA–GGA) is substantially larger for ‘low’-quartz
and ‘low’-cristobalite than for the corresponding high-temperature polytypes. The reason for
this is that the stretching of the Si–O–Si bonds in the low-symmetry phases resulting from an
increase of the internal pressure leads to a stronger expansion.

Although the GGA improves the description of the pressure-induced phase transitions to
the high-density polytypes, it destroys the correct order of stability among the low-density
polytypes: cristobalite, keatite and even tridymite are now predicted to be energetically more
favourable than quartz, in disagreement with the shapes of the coexistence lines in the phase
diagram. Hence we cannot agree with Hamann’s conclusion that the fact that the pressure-
induced quartz–stishovite transition is better described in the GGA reflects the fact that the GGA
would be capable of a more accurate treatment of the exchange–correlation energy density in
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regions of exponential charge decay. The fact that the GGA corrections areisotropicis caused
by the fact that the largest contributions to the gradient corrections stem from regions close to the
ionic core, as concluded by Juan and Kaxiras [105] on the basis of an investigation of the local
variations in the exchange–correlation energy density induced by the gradient corrections. In
more compact crystal structures the large density gradients are partially levelled out by overlaps
from neighbouring atoms; therefore gradient corrections tend to be smaller.

Altogether, the conclusions concerning the role of gradient corrections remains unsatis-
factory: the GGA improves on the structural energy differences between structures with widely
different local connectivities, but leads to poorer results for structural, cohesive and elastic
properties. Preliminary results show that the LDA also gives good agreement for the phonon
spectrum ofα-quartz (reference [106]).

Our results should also be seen in the context of recent work on the denser post-stishovite
phases [38] and on porous forms of silica and aluminosilicates. The recent work of Teter
et al [38], also based on the VASP and the LDA, demonstrates the possibility of extensive
polymorphism of silica at very high pressure, with an infinite number of structures describable
as eutectic hexagonal close-packed arrays of oxygen with half of the octahedral interstices filled
in different ways by silicon. A post-stishovite sequence of stable phases, stishovite→ CaCl2-
type→ α-PbO2-type→ Pa3-type, has been proposed [38]. On the other hand, firstab initio
calculations of porous aluminosilicates (zeolites), including the purely siliceous forms of these
materials, are becoming available (references [107,108]). These calculations include structures
as complex as mordenite with 48 SiO2 units per cell in the purely siliceous form.

Finally, we would like to mention that very recent work on polymorphism in zirconia
(reference [110]) leads to very similar conclusions: the LDA yields consistently more accurate
predictions of the structures of all polytypes, but the structural energy differences between
phases with different Zr–O coordinations are quantitatively correct only if gradient corrections
are used. Hence we can conclude that the LDA allows one to determine the crystal structures
of even complex inorganic compounds with high accuracy. To predict the energetics of
the competing phases with an accuracy sufficient to give quantitatively accurate results for
transition pressures without causing deterioration in the high quality of the calculated structures
and predicting accurate equations of state requires the construction of an improved gradient
functional.
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[65] Dmitriev V, Torgashev V, Toĺedano P and Salje E K H1997Europhys. Lett.37553
[66] Dolino G 1990Phase Transitions2159
[67] Dove M T, Giddy A P and Heine V 1993Trans. Am. Crystallogr. Assoc.2765
[68] Tsuneyuki S, Aoki H and Tsukada M 1990Phys. Rev. Lett.64776
[69] Tezuka Y, Shin S and Ishigama M 1991Phys. Rev. Lett.662356
[70] Angel R J, Allan D R, Miletich R and Finger F W 1997J. Appl. Crystallogr.30461
[71] Levien L, Prewitt C T and Weidner D J 1980Am. Mineral.65920
[72] Glinnemann J, King H E, Schulz H, Hahn Th, La Placa S J and Dacol F 1992Z. Kristallogr. 198177
[73] Hazen R M, Finger L W, Hemley R J and Mao H K 1989Solid State Commun.72507
[74] Bass J D, Liebermann R C, Weidner D J and Finch S J 1981Phys. Earth Planet. Inter.25140
[75] Wright A F and Lehmann M S 1981J. Solid State Chem.36371
[76] Landolt–B̈ornstein New Series1979 Group III, vol 11 (Berlin: Springer)
[77] Bruce A D and Cowley R A 1981Structural Phase Transitions(London: Taylor and Francis)
[78] Grimm H and Dorner B 1975J. Phys. Chem. Solids36407
[79] Giddy A P, Dove M T, Pawley G S and Heine V 1993Acta Crystallogr.A 49697
[80] Vallade M, Berge B and Dolino G 1992J. PhysiqueI 2 1481
[81] Furthm̈uller J, Hafner J and Kresse G 1994Phys. Rev.B 5015 506
[82] Wyckoff W L 1925Am. J. Sci.9 448

Wyckoff W L 1925Z. Kristallogr. 62189
[83] Barth T F W 1932Am. J. Sci.23350
[84] Nieuwenkamp W 1937Z. Kristallogr. 96454
[85] Peacor D R 1973Z. Kristallogr. 138274
[86] Wright A F and Leadbetter A J 1975Phil. Mag.311391
[87] Barth T F W 1932Am. J. Sci.2497
[88] Nieuwenkamp W 1935Z. Kristallogr. 9282
[89] Dollase W A 1965Z. Kristallogr. 121369
[90] Pluth J J, Smith J V and Faber J 1985J. Appl. Phys.571045
[91] Downs R T and Palmer D C 1994Am. Mineral.799
[92] O’Keefe M and Hyde B G 1976Acta Crystallogr.B 322923
[93] Swainson I P and Dove M T 1993Phys. Rev. Lett.71193
[94] Kihara K 1980Z. Kristallogr. 15295

Kihara K 1981Z. Kristallogr. 15793
[95] Dollase W A 1967Acta Crystallogr.23617
[96] Kihara K 1977Z. Kristallogr. 146185
[97] Dollase W A and Baur W H 1976Am. Mineral.61971

Baur W H 1977Acta Crystallogr.B 332615
[98] Kato K and Nukui A 1976Acta Crystallogr.B 322486
[99] Konnert J H and Appleman D E 1978Acta Crystallogr.B 34391

[100] Geisinger K L, Spackmann M A and Gibbs G V 1987J. Phys. Chem.913237
[101] Kirfe A, Will G and Arndt J 1979Z. Kristallogr. 194315
[102] Levien L and Prewitt C T 1981Am. Mineral.66324
[103] Sugiyama M, Endo S and Koto K 1987Mineral. J. Japan13455
[104] Ross N L, Shu J F, Hazen R and Gasparik T 1990Am. Mineral.75739
[105] Juan Yu-min and Kaxiras E 1993Phys. Rev.B 4814 994



3874 Th Demuth et al

[106] Jeanvoine Y, Kern G, Kresse G,Ángyán J G and Hafner J 1999 to be published
[107] Jeanvoine Y,́Angyán J G, Kresse G and Hafner J 1998J. Phys. Chem.B 1025573
[108] Demuth Th and Hafner J 1999 to be published
[109] Liu L, Bassett W A and Takahashi T 1974J. Geophys. Res.791160
[110] Jomard G, Petit T, Pasturel A, Kresse G and Hafner J 1999Phys. Rev.B 594044


